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Protein-LM Large-scale protein language models «pbaoa1 workshop)

Motivation Related works
TAPE (UC Berkeley)

- Evaluating Protein Transfer Learning with TAPE
- A series of downstream tasks

Language and protein aresimilar @ © © © © ©
- Governed by intrinsic law s backbone |

- Linguistics / life code

Success in large NLP models 9 [rgk] TFS9

_ ESM (Facebook)
- Bert / GPT3 / Switch Transformer

(/) A:0.01 - Evolutionary Scale Modeling
Apply language model to protein! L Y06 - Pretrained language models with 1 billion parameters
Methods Results

Pre-train Improved performance on 4 downstream tasks

- Capture universal protein representation from unlabeled data

Paper (4 citations); Github (60+ stars)

- Masked language model: mask & predict multiple positions

Task Metric TAPE Protein-LM (3B)
Fine-tune “Unlabeled’
Database contact pred P@L/5 0.36 0.75
- Supervised on labeled data k ; _
Modified BERT remote homology Accuracy 0.21 0.30
- Transfer to downstream tasks \' :
] ] e — 2-nd structure Accuracy 0.73 0.79
Alleviate need of annotation | on fasks model
' | fluorescence Spearman'r 0.68 0.68

Fine-tune

stability Spearman'r 0.73 0.79

Pretrain on PFAM (32M) Finetune


https://arxiv.org/abs/2108.07435
https://github.com/THUDM/ProteinLM

Megatron-MSA Cracking the Grammar of Protein with MSA

Motivation Related works
From individual to multiple - MSA Transformer (Facebook)
- MSA: mUItiple Sequence O—.—O—O—O—O—.—O—Q - Axial attention Column Attention Untied Row Attention Fd
- : s H ERREEEERE
- Co-evolutionary info - Interleave row & col e
. N ; . - Residual dependency (B )
Sequence variation contad [ fon ]
S H ontac Row Attention Tied Row Attention Layetharm
- Spatial proximity Q W A ﬁ‘i
: . . , &=
Model alignments jointly! Corelation RRRRARRREE o))
Methods Results
Data preparation - Improved CC@CAMEO
- HHBIits for constructing MSA database (1.5M samples) S
. . 1 P ®
Training framework ¥ | | CAMEO |
- & & | | Model | P@L | P@L/2 | P@LJS |
- Megatron-LM (NVIDIA, efficient LM training) | =S | Baseline in MSA Transformer | ProtTransTs [ 253 |\ | 426 |
- | ‘ | ESM-1b [ 307 |\ | 523 |
Contact map | | Potts 239 | \ | 427 |
- Anintermediate representation between secondary and . | | Facebook baseline | 43 | 513 | 596 |
| Protein-MSA (ours) | Protein-MSA-1B | 46 | 547 | 631 |

tertiary structures

- Attention map (L X L) is a good proxy of contact map




SPLD-ExtraTrees Predicting kinase inhibitor resistance (sriefings in Bioinformatics)

Motivation

Protein mutations are com
- Cause drug resistance

Diseases and targeted curations

- Suppress growth & division
- The affinity changes AAG: A

mon

VL divide

signal
of AG

Resistance analysis via affinity!

Methods

Self-paced learning

- Learn step by step, starting with easy samples
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Problem formulation

D ={(x;,y)}i=1, x; ER™y; ER

Mutation = protein stability

fp : Extra-Trees model

Cancer Research UK

A99(long protocol) [A99I]
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Experimental AAG, kcal/maol

- Dataset: molecular features > AAG (n samples)

B.Feature calculation and selection
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Results (Paper)

Table 2: Summary of the computational methods used, their calculation costs and performance. Mean prediction

erformance z; ... over 20 repetitions are reported. The best results are highlighted in bold.
lower
Approximate cost Performance

Abbreviation Method o s:;‘;l'ﬁ; fcld o per AAG estimate

Hardware Compute RMSE Pearson AUPRC
hours (kcal/mol)

1 . . Amber99sb*-ILDN 10 CPU cores 07105 0.59 0.77
A99 Molecular Dynamics and GAFF v2.1 and 1 GPU 59 0. 310 7 0.445 5, 0.565 35
1 . . Amber99sb*-ILDN 10 CPU cores 11-09 0.59 0.75
A99] Molecular Dynamics and GAFF v2.1 and 1 GPU 98 0.9157; 0.42575, 0.51g° 57
REF152 Rosetta REF15 1 CPU core 32 0.720-83 0.679-5% 0.539:74
ExtraTrees ™3 ML n/a 1 CPU core 0.02 0.875°88 0.12°-2% 0.209 39
SPLExtraTrees ML Scenario 1 wa 1 CPU core 0.02 0.7507% 0.500 5% 0.489°53
SPLDExtraTrees ML n/a 1 CPU core 0.02 0.730 73 0.545°5% 0.500°53
ExtraTrees ML n/a 1 CPU core 0.02 0.819:88 0.349:3% 0.35937
SPLExtraTrees ML Scenario 2 n/a 1 CPU core 0.02 0.733-89 0.533:5% 0.469-37
SPLDExtraTrees ML n/a 1 CPU core 0.02 070578 0.605°55 0.559°32
ExtraTrees > ML n/a 1 CPU core 0.02 0.68)-52 0.579°52 0.47952
SPLExtraTrees ML Scenario 3 w/a 1 CPU core 0.02 0.5955% 0.725 78 0.569 27
SPLDExtraTrees ML n/a 1 CPU core 0.02 0.583°22 0.749:75 0.56959

! Data for the molecular dynamic simulations with the A99 and A99! force field are obtained from the work in [4].
2 Data for the Rosetta REF15 scoring function are obtained from the work in [4].

3 Data for the ExtraTrees™ are obtained from the work in [4].


https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac050/6543900

%ﬁd /Mc your ltime!



