Annual Summary of 2021

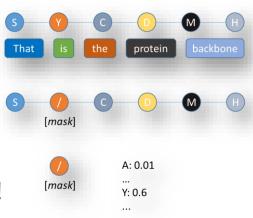
Yijia Xiao

3/22/2022

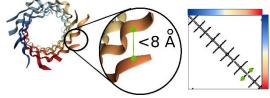
Protein-LM Large-scale protein language models (KDD2021 workshop) Motivation Related works

- Language and protein are similar
 - Governed by intrinsic law
 - Linguistics / life code
- Success in large NLP models
 - Bert / GPT3 / Switch Transformer
- Apply language model to protein!

Methods



- TAPE (UC Berkeley)
 - Evaluating Protein Transfer Learning with TAPE
 - A series of downstream tasks g



- ESM (Facebook)
 - Evolutionary Scale Modeling
 - Pretrained language models with 1 billion parameters

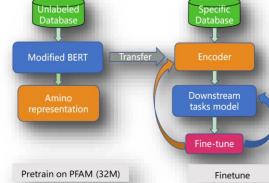
Results

- Improved performance on 4 downstream tasks
- <u>Paper</u> (4 citations); <u>Github</u> (60+ stars)

Task	Metric	ΤΑΡΕ	Protein-LM (3B)
contact pred	P@L/5	0.36	0.75
remote homology	Accuracy	0.21	0.30
2-nd structure	Accuracy	0.73	0.79
fluorescence	Spearman'r	0.68	0.68
stability	Spearman'r	0.73	0.79

Pre-train

- Capture universal protein representation from unlabeled data
- Masked language model: mask & predict multiple positions
- Fine-tune
 - Supervised on labeled data
 - Transfer to downstream tasks
- Alleviate need of annotation

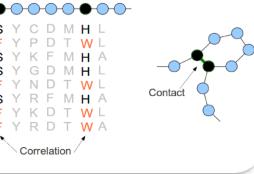


Megatron-MSA Cracking the Grammar of Protein with MSA **Motivation**

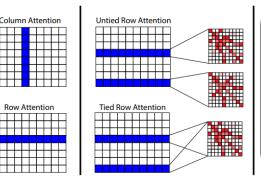
Hit
 False Positive
 False Negative

- From individual to multiple
 - MSA: multiple sequence
 - Co-evolutionary info -
- Sequence variation
 - Spatial proximity
- Model alignments jointly!

Methods



- **Related works**
- MSA Transformer (Facebook)
 - Axial attention
 - Interleave row & col
 - **Residual dependency**



Feed Forward

LaverNorm

Column

LayerNorn

Row Attentio

CAMEO

P@L/2

١

51.3

54.7

P@L

25.3

30.7

23.9

43

46

P@L/5

42.6

52.3

42.7

59.6

63.1

Results

- Data preparation
 - HHBlits for constructing MSA database (1.5M samples) -
- Training framework
 - Megatron-LM (NVIDIA, efficient LM training)
- Contact map -
 - An intermediate representation between secondary and tertiary structures
 - Attention map $(L \times L)$ is a good proxy of contact map

Improved CC@CAMEO

Contact Map			
N.			
NAS.		Model	
all a start	Baseline in MSA Transformer	ProtTrans-T5	
A Charles		ESM-1b	
199		Potts	
		Facebook baseline	
Star in the	Protein-MSA (ours)	Protein-MSA-1B	
Same 3			

SPLD-ExtraTrees Predicting kinase inhibitor resistance (Briefings in Bioinformatics)

Motivation

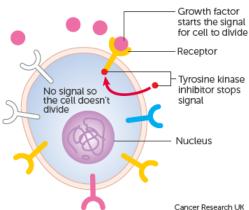
- Protein mutations are common
 - Cause drug resistance
- Diseases and targeted curations
 - Suppress growth & division signal
 - The affinity changes $\Delta\Delta G: \Delta$ of ΔG
- *Resistance* analysis via affinity!

Methods

- Self-paced learning
 - Learn step by step, starting with easy samples
 - Latent variable $\boldsymbol{v} = [v_{1, \dots}, v_n]$ $\min_{\boldsymbol{\beta}, \boldsymbol{v} \in [0, 1]^n} \mathbf{E}(\boldsymbol{\beta}, \boldsymbol{v}; \lambda) = \sum_{i=1}^n v_i L(y_i, f(\boldsymbol{x}_i, \boldsymbol{\beta})) - \lambda \sum_{i=1}^n v_i$
 - Diversity reward

- *b* protein groups
$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbb{R}^{m \times n} \to \mathbf{X}^{(1)}, \dots, \mathbf{X}^{(b)}$$

 $\mathbf{v} = [\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(b)}] \quad \mathbf{v}^{(j)} = (v_1^{(j)}, \dots, v_{n_j}^{(j)})^T \in [0, 1]^{n_j}$
 $\min_{\boldsymbol{\beta}} \min_{\boldsymbol{\beta}, \mathbf{v} \in [0, 1]^n} \mathbb{E}(\boldsymbol{\beta}, \mathbf{v}; \lambda, \gamma) = \sum_{i=1}^n v_i L(y_i, f(\mathbf{x}_i, \boldsymbol{\beta})) - \lambda \sum_{i=1}^n v_i - \gamma \parallel \mathbf{v} \parallel_{2, 1}$



Problem formulation

- Dataset: molecular features $\rightarrow \Delta\Delta G$ (n samples)

 $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n, \ \boldsymbol{x}_i \in \mathbb{R}^m, y_i \in \mathbb{R}$

- ΔΔG

A99(long protocol) [A99]

Experimental ∆∆G, kcal/mol SPLExtraTrees (interpolating)

Experimental ΔΔG, kcal/mol

-2

-2

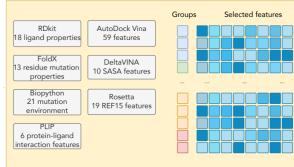
RMSE = 0.91 Pears = 0.42

 $\Delta I I P R C = 0$

0

RMSE = 0.59 Pears = 0.72 AUPRC = 0.56 Mutation \rightarrow protein stability

- f_{β} : *Extra-Trees* model



Results (Paper)

Table 2: Summary of the computational methods used, their calculation costs and performance. Mean prediction performance x_{lower}^{upper} over 20 repetitions are reported. The best results are highlighted in **bold**.

Abbreviation	Method		Force field or scoring function	Approximate cost per $\Delta \Delta G$ estimate		Performance		
HUDICIMUO				Hardware	Compute hours	RMSE (kcal/mol)	Pearson	AUPRC
A99 ¹	Molecular Dynamics		Amber99sb*-ILDN and GAFF v2.1	10 CPU cores and 1 GPU	59	$0.91^{1.05}_{0.77}$	$0.44_{0.20}^{0.59}$	$0.56_{0.32}^{0.77}$
$A99l^1$	Molecular Dynamics		Amber99sb*-ILDN and GAFF v2.1	10 CPU cores and 1 GPU	98	$0.91^{1.09}_{0.74}$	$0.42_{0.20}^{0.59}$	$0.51_{0.27}^{0.75}$
REF15 ²		Rosetta	REF15	1 CPU core	32	$0.72_{0.60}^{0.83}$	$0.67^{0.81}_{0.45}$	$0.53_{0.29}^{0.74}$
ExtraTrees*3	ML	Scenario 1	n/a	1 CPU core	0.02	$0.87^{1.06}_{0.68}$	$0.12_{-0.04}^{0.29}$	$0.20_{ m 0.10}^{ m 0.39}$
SPLExtraTrees	ML		n/a	1 CPU core	0.02	$0.75_{0.75}^{0.77}$	$0.50_{0.38}^{0.54}$	$0.48_{0.34}^{0.52}$
SPLDExtraTrees	ML		n/a	1 CPU core	0.02	$0.73_{0.72}^{0.74}$	$0.54_{0.47}^{0.56}$	$0.50_{ m 0.43}^{ m 0.52}$
ExtraTrees	ML	Scenario 2	n/a	1 CPU core	0.02	$0.81_{0.66}^{0.89}$	$0.34_{0.22}^{0.54}$	$0.35_{0.22}^{0.47}$
SPLExtraTrees	ML		n/a	1 CPU core	0.02	$0.73_{0.53}^{0.80}$	$0.53_{0.38}^{0.65}$	$0.46_{0.35}^{0.57}$
SPLDExtraTrees	ML		n/a	1 CPU core	0.02	$0.70^{0.76}_{0.57}$	$0.60_{0.49}^{0.68}$	$0.55_{0.42}^{0.72}$
ExtraTrees*3	ML	Scenario 3	n/a	1 CPU core	0.02	$0.68^{0.80}_{0.55}$	$0.57_{0.34}^{0.72}$	$0.47_{0.25}^{0.68}$
SPLExtraTrees	ML		n/a	1 CPU core	0.02	$0.59^{0.61}_{0.58}$	$0.72_{0.70}^{0.73}$	$0.56_{0.51}^{0.57}$
SPLDExtraTrees	ML		n/a	1 CPU core	0.02	$0.58^{0.59}_{0.57}$	$0.74_{0.72}^{0.75}$	$0.56_{0.52}^{0.60}$

¹ Data for the molecular dynamic simulations with the A99 and A99*l* force field are obtained from the work in [4].

² Data for the Rosetta REF15 scoring function are obtained from the work in [4].
³ Data for the ExtraTrees* are obtained from the work in [4].

Thanks for your time!